已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论: ①命题“p∧q”是真命题; ②命题“p∧¬q”是假命题; ③命题“¬p∨q”是真命题; ④命题“¬p∨¬q”是
问题描述:
已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是( )
A. ②③
B. ①②④
C. ①③④
D. ①②③④
答
∵当x=
时,tanx=1,∴命题p为真命题.命题¬p为假命题.π 4
∵x2-3x+2<0的解为1<x<2,∴命题q为真命题.命题¬q为假命题.
∴命题“p∧q”是真命题,命题“p∧¬q”是假命题,命题“¬p∨q”是真命题,命题“¬p∨¬q”是假命题.
故选D