英语翻译
英语翻译
Finally,we will discuss a possible mechanism for the
observed growth of single-crystalline rutile TiO2.As shown
in Fig.7,the boundary edge between the adjacent diamond
(1 0 1) and (1 1 0) facets is parallel to the ½¯111\4 direction.
This direction was parallel to the observed /1 11S and
/110S axes of the grown single-crystalline TiO2 thin
films,marked S2 and S3,respectively.This suggests that
low-index planes appear on the surrounding edge surfaces
of the grown TiO2 thin films so as to reduce the total
number of dangling bonds and to decrease the total free
energy of the concerned system.In addition,the effect of
low-energy particle beam such as the Bravais law and the
Onderdelinden channeling effect may determine the crystalline
direction of the grown single-crystalline films [1].
Because the diamond (1 1 0) facet was inclined at 601
against the incident electron beam direction when the
incident electron beam impinged parallel to the diamond
[0 1 1] direction to the rod substrate,this off-angle effect
should be considered to estimate the sizes of the singlecrystalline
TiO2 regions.The regions estimated for the
single-crystalline TiO2 thin films marked S2 and S3
were E200\2100 and E150\2140nm2 in size,respectively,
being nearly equal each other.Thus,it is concluded that the
TiO2 thin films deposited on substrates with sizes of
E2\2104nm2 by using low-energy particle beam can grow
as a single-crystalline phase.It is also found that the area of
the single-crystalline TiO2 can spread over parts of the
adjacent idiomorphic surfaces.Since any strain induced by
the lattice misfit between the substrate and overlayer
slightly increase the total free energy of the system,the
rutile TiO2 film is considered to more easily grow on a
smooth flat surface with substantially less strain energies.
Thus,it is expected that single-crystalline rutile thin films
may grow on flat substrates with larger areas than those
treated in the present study.
However,in the present study where the incident
directions of the low-energy particles were not well defined
due to usage of the polycrystalline diamond films,no reliable
relation between the growing plane direction of the overlayer
and the particle beam direction has been determined.Thus,
we should investigate in more details the threshold sizes of
the substrates for the single-crystallization,the mechanism
governing the crystalline directions,the influence of the
sputtered particle beam,and so on.
是Izumi,Teraji 和 Ito 在 Journal of Crystal Growth去年2月登的一篇文章吧,看过看过,是同行吧.不才在国外就是学这个的,姑且试一试,但是很多专业词汇的中文名称不大熟,多多包涵.
最后,我们将探讨所观测到的单晶金红石二氧化钛生长的可能机制.如图7所示,在相邻的钻石(101)和(110)面的边界边缘与½¯111方向平行.
此方向与被生成并被分别标为S2和S3的二氧化钛薄膜上所观测到的/111S和/110S轴平行.
这说明在所生成的二氧化钛薄膜周围边缘的表面形成的低标平面是为了减少虚悬键的总数和降低该系统的总*能.
此外,低能量粒子束的效应,例如布拉韦定律和Onderdelinden沟道效应,可能影响到生成的单晶膜的晶体方向.【1】
因为钻石(110)面在入射电子束与杆状基质的钻石(011)面平行撞击时在601向入射的电子束倾斜,这个偏转角度在估算单晶体二氧化钛域大小时需被考虑在内.
被分别标为S2和S3的二氧化钛单晶薄膜域的大小估算分别为E200\2100和E150\2140nm2『从PDF拷贝时抄错了吧』,几乎相等.
所以,结论是:通过使用低能量粒子束在基质上沉积的二氧化钛薄膜可以以单晶体相生长.
同时也发现单晶体二氧化钛区可以扩张至相邻的自形面的一部分上.
即然因罩面与基质间晶格错配所产生的应变会小幅提升系统的总*能,因此在平滑,所以能实质上减少应变能的表面上生长金红石二氧化钛膜将会更加容易.
所以可以预料单晶金红石薄膜在平滑基质上的生长区域会比现在的研究中更大.
然而,现今的研究中因为使用多晶体钻石膜致使低能量粒子的入射角无法被明确测定,我们无法确定罩面的生长平面方向与粒子束方向间是否有任何关系.
因此,我们应该更深入的研讨基质的单晶体结晶化的大小阈值,决定晶体方向的机制,粒子束溅射的影响,等等.