已知x^2+p(x+1)+1=0的两根为tanx,tany,且x,y都是锐角,求x+y的值(请写过程)
问题描述:
已知x^2+p(x+1)+1=0的两根为tanx,tany,且x,y都是锐角,求x+y的值(请写过程)
答
x^2+p(x+1)+1=0
x^2+px+p+1=0
tan(x+y)=(tanx+tany)/(1-tanxtany)
根据韦达定理:
tan(x+y)=(tanx+tany)/(1-tanxtany)=(-p)/(-p)=1
因为x,y都是锐角
所以x+y=π/4或3π/4