化简:sin^2(42°+α)-2tan(25°+α)tan(65°-α)+sin^2(48°-α)-cot^2(990°-α)
问题描述:
化简:sin^2(42°+α)-2tan(25°+α)tan(65°-α)+sin^2(48°-α)-cot^2(990°-α)
答
-(tanα的平方) -1.你要发现42°+α与48°-α互余,25°+α与65°-α互余.正切余切的周期是180°,故最后一个可化为90°-α,可得到最后一个为tanα的平方具体怎么解?由互余,所以有sin^2(4,°+α)+sin^2(48°-α)=1,tan(25°+α)tan(65°-α)=1,由周期为180°有cot^2(990°-α)=cot^2(90°-α)=tan^2α,故有以上的结果