(8a的3次方)的m次方除以[(4a的平方)的n次方乘2a]=急,

问题描述:

(8a的3次方)的m次方除以[(4a的平方)的n次方乘2a]=
急,

(8a的3次方)的m次方除以[(4a的平方)的n次方乘2a]
=8^m*a^(3m)/[4^n*a^(2n)*2a]
=2^(3m)*a^(3m)/[2^2n*a^(2n)(2a)]
=1/(2a)*2^(3m-2n)*a^(3m-2n)
=1/a*2^(3m-2n-1)*a^(3m-2n)

(8a的3次方)的m次方除以[(4a的平方)的n次方乘2a]
=[(2a)^3]^m÷{[(2a)^2]^n*2a}
=(2a)^3m÷[(2a)^(2n+1)]
=(2a)^(3m-2n-1)