关于x的方程x2-(cosAcosB)x-cos2C2=0有一个根为1,则△ABC一定是(  ) A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形

问题描述:

关于x的方程x2-(cosAcosB)x-cos2

C
2
=0有一个根为1,则△ABC一定是(  )
A. 等腰三角形
B. 直角三角形
C. 锐角三角形
D. 钝角三角形

∵关于x的方程x2-(cosAcosB)x-cos2C2=0有一个根为1,∴1-cosAcosB-1+cosC2=0,cosC+2cosAcosB=1,∴cosAcosB-sinAsinB+2cosAcosB=1,即cos(A-B)=1.∵-π<A-B<π,∴A-B=0,故△ABC一定是等腰三角形,故选:A....