设函数F(X)=X^2+2X,且当点P(X,Y)是函数Y=F(X)图像上的点时,则点Q(-X,-Y)是函数Y=G(X)图像上的点,求函数
问题描述:
设函数F(X)=X^2+2X,且当点P(X,Y)是函数Y=F(X)图像上的点时,则点Q(-X,-Y)是函数Y=G(X)图像上的点,求函数
Y=G(X)的解析式.
答
F(X)=X^2+2X是过原点的抛物线,开口向上
点P(X,Y)与点Q(-X,-Y)关于原点对称 所以G(X)的图象是开口向下,过原点的抛物线,形状与F(X)一样.
F(X)=X^2+2X=X(X+2)=Y
X(X+2)=Y
将上式中x,y换成-x,-y即得到关于原点对称的图形
-X(-X+2)=-Y
Y=X(-X+2)=-X^2+2X
所以G(X)=-X^2+2X