将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值为_.
问题描述:
将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值为______.
答
设等腰直角三角形的斜边为xcm,则正方形的边长为(10-x)cm.若等腰直角三角形的面积为S1,正方形面积为S2,则S1=12•x•12x=14x2,S2=(10-x)2,面积之和S=14x2+(10-x)2=54x2-20x+100.∵54>0,∴函数有最小值...