定义在R上的f(x),满足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,则f(2012)的值为_.
问题描述:
定义在R上的f(x),满足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,则f(2012)的值为______.
答
∵f(m+n2)=f(m)+2[f(n)]2,对于任意的m,n∈R都成立且f(1)≠0,
令m=n=0可得,f(0)=f(0)+2f2(0),则f(0)=0
令m=0,n=1可得f(1)=f(0)+2f2(1)
∵f(1)≠0
∴f(1)=
1 2
∵f(m+n2)=f(m)+2[f(n)]2,对于任意的m,n∈R都成立
令n=1可得,f(m+1)=f(m)+2[f(1)]2,即f(m+1)-f(m)=2[f(1)]2=
1 2
由f(m+1)-f(m)=
可得f(m)是以f(1)=1 2
为首项,以1 2
为公差的等差数列1 2
由等差数列的通项公式可得,f(m)=
+1 2
(n−1)=1 2
n 2
∴f(2012)=1006
故答案为:1006