[y+√(x²+y²)]dx=xdy满足y(1)=0的解
问题描述:
[y+√(x²+y²)]dx=xdy满足y(1)=0的解
答
[y+√(x²+y²)]dx=xdy满足y(1)=0的解 dy/dx=[y+√(x²+y²)]/x=y/x+√[1+(y/x)²].(1)令y/x=u,则y=ux,dy/dx=u+x(du/dx),代入(1)式得:u+x(du/dx)=u+√(1+u²),消去u即得:x(du/dx)=√(...