若有理数x、y、z满足(x-y)²-4(x-y)(y-z)=0,则下列式子一定成立的是:

问题描述:

若有理数x、y、z满足(x-y)²-4(x-y)(y-z)=0,则下列式子一定成立的是:
A:x+y+z=0
B:x+y-2z=0
C:y+z-2x=0
D:z+x-2y=0

∵﹙x-z﹚²-4﹙x-y﹚﹙y-z﹚=0,
∴[(x-y)+(y-z)]²-4﹙x-y﹚﹙y-z﹚=0
∴[(x-y)-(y-z)]²=0
z+x-2y=0∴[(x-y)+(y-z)]²-4﹙x-y﹚﹙y-z﹚=0 到∴[(x-y)-(y-z)]²=0 是怎么来的?可以讲清楚一点吗?(x-y)²-4(x-y)(y-z)=0∴[(x-y)+(y-z)]²-4﹙x-y﹚﹙y-z﹚=0(x-y)²=4(x-y)(y-z)∴[(x-y)+(y-z)]²-(x-y)²=0化简得y+z-2x=0