我有几个关于多边形面积的题,
问题描述:
我有几个关于多边形面积的题,
判断题:1.梯形的上底和下底越长,面积越大
2.三角形的底越长,面积就越大
3.任何一个梯形都可以分成两个等高的三角形
应用题:一个等腰梯形,上底2cm,下底3.5cm,8cm,在这个梯形中,剪去一个最大的平行四边形,剩下的面积是多少?有几种求法?(这个有两种求法,都要回答哦!)
答
判断题:
1、错,因为梯形面积还要考虑到高
2、错,三角形的面积同样要考虑到高.
3、对.将对角两点连接,得到两个高相等的三角形.
应用题:
方法一:用梯形的面积减去平行四边形的面积
最大的平行四边形就是以等腰梯形一个腰与上底为边的平行四边形
S梯形=(2+3.5)X1.8/2=4.95平方里面 S平行四边形=2X1.8=3.6平方厘米
所以剩下的面积是4.95-3.6=1.35平方厘米
方法二:直接计算剩下图形的面积.
截取平行四边形后剩下的面积是一个三角形.高与梯形一样,是1.8cm,
底边是梯形的下底减去上底即:3.5-2=1.5cm
所以面积是1.8X1.5/2=1.35平方厘米