解常微分方程y'=2(y-2)^2/(x+y-1)^2
问题描述:
解常微分方程y'=2(y-2)^2/(x+y-1)^2
答
解方程组y-2=0,x+y-1=0得x=-1,y=2,作变换X=x+1,Y=y-2,则原微分方程化为dY/dX=2Y^2/(X+Y)^2=2(Y/X)/[1+(Y/X)]^2令u=Y/X,则u+du/dX=2u^2/(1+u)^2,分离变量得(1+u)^2/[u(u^2+1)]du=-dX/X[1/u+2/(...