一个古代有名的算数题:一个数,3个3地数,于2;5个5个的数,还于3个;7个7个地数还于2.着个数怎样算!

问题描述:

一个古代有名的算数题:一个数,3个3地数,于2;5个5个的数,还于3个;7个7个地数还于2.着个数怎样算!
我要的是步骤 总共50分

设此数是3x+2=5y+3=7z+2 x,y,z都是整数
解出这个三元一次不等式组再求出3x+2或5y+3或7z+2 就可以了
以下是这方程的解法:
令x=7p z=3p y=(21p-1)/5 令p=5k+1,y=21k+4 带入原式 就得到了此数是105k+23 k取整数
这是求出通解的做法
希望对你有些帮助