已知“T1,T2是方程T²+2T-24=0的两个实数根,且T1<T2,抛物线Y=2/3X²+bx+c的图像经过A(T1,0)T2)1,求这个抛物线的解析式2,设点P(X,Y)是抛物线上一动点,且位于第三象限,四边形OPAQ是以OA为角线的平行四边形,求四边形OPAQ的面积S与X之间的函数关系式,并写出自变量X的取值范围.3,在(2)的条件下,当四边形OPAQ的面积为24时,是否存在这样的点P,使四边形OPAQ为正方形?若存在,求出P点坐标.若不存在,说明理由.

问题描述:

已知“T1,T2是方程T²+2T-24=0的两个实数根,且T1<T2,抛物线Y=2/3X²+bx+c的图像经过A(T1,0)
T2)
1,求这个抛物线的解析式
2,设点P(X,Y)是抛物线上一动点,且位于第三象限,四边形OPAQ是以OA为角线的平行四边形,求四边形OPAQ的面积S与X之间的函数关系式,并写出自变量X的取值范围.
3,在(2)的条件下,当四边形OPAQ的面积为24时,是否存在这样的点P,使四边形OPAQ为正方形?若存在,求出P点坐标.若不存在,说明理由.

1,.由T²+2T-24=0 解得T1=-6,T2=4,因为y=2/3x²+bx+c过A(-6.0),Q(0,4)代入抛物线的解析式得:y=2/3x²-14/3x+4...`2)s四边形OPAQ=OA×Y (y为P点的纵坐标).因为OA=6,y=2/3x²-14/3x+4,所以s=4x&...