设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为( ) A.-2 B.-1 C.1 D.2
问题描述:
设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为( )
A. -2
B. -1
C. 1
D. 2
答
令x+2=1,所以x=-1,将x=-1代入(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11得
[(-1)2+1](-2+1)9=a0+a1+a2+…+a11;∴a0+a1+a2+…+a11=2×(-1)=-2.
所以选A