已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则以两圆公共弦为直径的圆的方程是______.

问题描述:

已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则以两圆公共弦为直径的圆的方程是______.

联立两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,解得两圆的交点(0,2)和(-4,0)
以两圆公共弦为直径的圆,则圆心的坐标x=

0-4
2
=-2,y=
2+0
2
=1,即(-2,1)
圆的半径r=
1
2
4+16
=
5

∴以两圆公共弦为直径的圆的方程是(x+2)2+(y-1)2=5
故答案为:(x+2)2+(y-1)2=5
答案解析:联立两圆解得两圆的交点(0,2)和(-4,0),求出以两圆公共弦为直径的圆的圆心的坐标与半径,即可得到圆的方程.
考试点:圆方程的综合应用.
知识点:本题考查圆的标准方程,考查圆与圆的位置关系,确定两圆的交点是解题的关键.