如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.
问题描述:
如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.
求证:BE=AF.
答
知识点:本题考查三角形全等的判定和等边三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
证明:∵△ACE和△BCF是等边三角形,
∴∠ACE=∠FCB=60°,CE=AC,CF=CB,
∴∠ACF=∠ECB=60°+∠ACB.
在△CEB与△CAF中,
,
CE=AC ∠ECB=∠ACF BC=FC
∴△CEB≌△CAF(SAS),
∴BE=AF.
答案解析:利用等边三角形的性质得到相等的边和角,CE=AC,CF=CB,∠ACF=∠ECB=90°+60°=150°,从而判定△CEB≌△ACF得到BE=AF.
考试点:全等三角形的判定与性质;等边三角形的性质.
知识点:本题考查三角形全等的判定和等边三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.