求不定积分 ∫e^-x·cosxdx
问题描述:
求不定积分 ∫e^-x·cosxdx
答
使用分部积分法两次即可,步骤如下:
∫e^(-x)cosxdx=-e^(-x)cosx-∫[-e^(-x)(cosx)']dx=-e^(-x)cosx+∫[-e^(-x)sinx]dx
=-e^(-x)cosx+e^(-x)sinx-∫e^(-x)(sinx)'dx
所以∫e^(-x)cosxdx=1/2[-e^(-x)cosx+e^(-x)sinx]+C