如图所示,在Rt△ABC中,∠ABC=90°.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.(1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?
问题描述:
如图所示,在Rt△ABC中,∠ABC=90°.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?
答
(1)证明:Rt△DEC是由Rt△ABC绕C点旋转60°得到,∴AC=DC,∠ACB=∠ACD=60°,∴△ACD是等边三角形,∴AD=DC=AC,(1分)又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到,∴AC=AF,∠ABF=∠ABC=90°,∵∠ACB=...
答案解析:(1)需证明△ACD是等边三角形、△AFC是等边三角形,即可证明四边形AFCD是菱形.(2)可先证四边形ABCG是平行四边形,再由∠ABC=90°,可证四边形ABCG是矩形.
考试点:旋转的性质;全等三角形的判定与性质;等边三角形的判定;平行四边形的判定;菱形的判定;矩形的判定.
知识点:此题主要考查菱形和矩形的判定,综合应用等边三角形的判定、全等三角形的判定等知识是解题的关键.