已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上. 问:在三角板平移过程中,图
问题描述:
已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上.
问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.
(说明:结论中不得含有图中未标识的字母)
答
存在与EB始终相等的线段,它是AH.证明:设当点E与点B重合时,A点落在DF上的M点,C点移动到N的位置,连接MA,如图所示由平移得ME平行且相等AB∴四边形MEBA为平行四边形∴EB平行且等于MA,MN∥AC∴∠AMH=∠DFE=30°又...