求证:对任何矩形A,总存在一个矩形B,使得矩形B与矩形A的周长和面积比等于同一个常数k(k≥1).

问题描述:

求证:对任何矩形A,总存在一个矩形B,使得矩形B与矩形A的周长和面积比等于同一个常数k(k≥1).

设已知矩形A的长与宽分别为a,b,所求矩形B的长与宽为x,y,
则矩形A的周长是2(a+b),面积为ab,
矩形B的周长为2(x+y),面积为xy,

x+y=k(a+b)
xy=kab

∴x,y是方程t2-k(a+b)t+kab=0的两实根.
当△=[k(a+b)]2-4kab≥0,即k≥
4ab
(a+b)2
时,方程有解.
所以,对于长与宽分别为a,b的矩形,当k≥
4ab
(a+b)2
时,存在周长与面积都是已知矩形的k倍的矩形.
∵(a-b)2≥0,
∴a2+b2≥2ab,a2+b2+2ab≥4ab,
即(a+b)2≥4ab,
4ab
(a+b)2
≤1,
4ab
(a+b)2
的最大值为1.
∴当k≥1时,所有的矩形都有周长与面积同时扩大m倍的矩形,
即对任何矩形A,总存在一个矩形B,使得矩形B与矩形A的周长和面积比等于同一个常数k(k≥1).