直线L经过P(5,5),其斜率为k,L与圆x2+y2=25相交,交点分别为A,B. (1)若|AB|=45,求k的值; (2)若|AB|<27,求k的取值范围.

问题描述:

直线L经过P(5,5),其斜率为k,L与圆x2+y2=25相交,交点分别为A,B.
(1)若|AB|=4

5
,求k的值;
(2)若|AB|<2
7
,求k的取值范围.

(1)直线L方程为y-5=k(x-5),即kx-y+5-5k=0,∵圆心(0,0)到直线L的距离d=|5−5k|k2+1,r=5,且|AB|=45,∴|AB|=2r2−d2,即20=25-(5k−5)2k2+1,解得:k=12或k=2;(2)由(1)得|AB|=2r2−d2<27,即25-(5k−...