数列 (7 8:37:5)
问题描述:
数列 (7 8:37:5)
在数列{an}中,a1=20,an+1=an + 2n — 1,(n属于N*),则数列{an}的通项公式an=?
答
an+1=an + 2n — 1
an=a(n-1) + 2(n-1) — 1
.
a2=a1+2-1
相加:
S(n+1)-a1=Sn+2*n*(n+1)/2-n
S(n+1)-Sn=a(n+1)=a1+n^2
a(n+1)=20+n^2
所以:
an=20+(n-1)^2=n^2-2n+21