将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( ) A.3+263 B.2+263 C.4+263 D.43+263
问题描述:
将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )
A.
+2
3
6
3
B. 2+
2
6
3
C. 4+
2
6
3
D.
4
+2
3
6
3
答
由题意知,底面放三个钢球,上再落一个钢球时体积最小.
于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为
,2
6
3
且由正四面体的性质可知:正四面体的中心到底面的距离是高的
,且小正四面体的中心和正四面体容器的中心应该是重合的,1 4
∴小正四面体的中心到底面的距离是
×2
6
3
=1 4
,正四面体的中心到底面的距离是
6
6
+1 (1即小钢球的半径),
6
6
所以可知正四棱锥的高的最小值为 (
+1)×4=4+
6
6
,2
6
3
故选 C.