已知已知log8(a)+log4(b^2)=5,log8(b)+log4(a^2)=7,求log4(根号下ab)
问题描述:
已知已知log8(a)+log4(b^2)=5,log8(b)+log4(a^2)=7,求log4(根号下ab)
答
log8(a)+log4(b^2)=5===>1/3*log2(a)+log2(b)=5---------1)
log8(b)+log4(a^2)=7===>1/3*log2(b)+log2(a)=7---------2)
解1),2)得:
log2(a)=6
log2(b)=3
log4(根号下ab)=1/4*log2(ab)=1/4×[log2(a)+log2(b)]=9/4