还有可微和可导的区别?
问题描述:
还有可微和可导的区别?
答
设y=f(x)是一个单变量函数, 如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导.如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数如果一个函数在x[0]处连续,那么它在x[0]处不一定可导函数可导定义:(1...
还有可微和可导的区别?
设y=f(x)是一个单变量函数, 如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导.如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数如果一个函数在x[0]处连续,那么它在x[0]处不一定可导函数可导定义:(1...