帮忙求下1/(cosx)^3dx的积分!
问题描述:
帮忙求下1/(cosx)^3dx的积分!
答
∫1/(cosx)^3dx=∫secx^3dx=∫secxdtanx=secxtanx-∫tanxdsecx(分部积分法)
=secxtanx-∫tanxtanxsecxdx=secxtanx-∫(secx^2-1)secxdx
=secxtanx-∫secx^3dx+∫secxdx
而∫secxdx=ln|secx+tanx|+C1(课本上的例题结论),C1为任意常数
所以∫1/(cosx)^3dx=1/2(secxtanx+ln|secx+tanx|)+C,C为任意常数