观察下列各个算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;根据上面的规律,请你用一个含n(n>0的整数)的等式将上面的规律表示出来______.

问题描述:

观察下列各个算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;根据上面的规律,请你用一个含n(n>0的整数)的等式将上面的规律表示出来______.

规律为n(n+2)+1=(n+1)2
答案解析:左边的规律是:第n个式子为n(n+2)+1,右边是一个完全平方数即(n+1)2
考试点:规律型:数字的变化类.
知识点:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.对于等式,要注意分别发现:等式的左边和右边的规律.