A、B两车沿相互垂直的铁轨向其交点处行驶,A车离交点处1000m,车速40km/h;B车距交点500m,车速30km/h,经过_秒两车相距最近,最近的距离为_米.

问题描述:

A、B两车沿相互垂直的铁轨向其交点处行驶,A车离交点处1000m,车速40km/h;B车距交点500m,车速30km/h,经过______秒两车相距最近,最近的距离为______米.

设经过t内两车相距最近,且最近距离为L,
∵v=

s
t

∴L2=(1km-40km/h×t)2+(0.5m-30km/h×t)2
=2500(km/h)2×t2-110km/h×t+1.25km2
=(50km/h×t-1.1km)2+2.46km2
则,当50km/h×t=1.1km,即t=
1.1km
50km/h
=
11
500
h=
11
500
×3600s=79.2s,
最近的距离:
L=
2.46km2
=
2460m2
≈49.6m.
故答案为:79.2;49.6.