若f`(x)=3,则lim(△x->0) [f(x+2△x)-f(x)]/△x=
问题描述:
若f`(x)=3,则lim(△x->0) [f(x+2△x)-f(x)]/△x=
答
由导数的定义可以知道,
lim(△x->0) [f(x+2△x)-f(x)]/ 2△x= f '(x)
所以
lim(△x->0) [f(x+2△x)-f(x)]/△x =2f '(x)=6