某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%. (1)若购买这批鱼苗共用了3600元,求甲、乙两种
问题描述:
某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
答
(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000-x)尾.
由题意得:0.5x+0.8(6000-x)=3600,
解方程,可得:x=4000,
∴乙种鱼苗:6000-x=2000,
答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;
(2)由题意得:0.5x+0.8(6000-x)≤4200,
解不等式,得:x≥2000,
即购买甲种鱼苗应不少于2000尾,
∵甲、乙两种鱼苗共6000尾,
∴乙不超过4000尾;
答:购买甲种鱼苗应不少于2000尾,购买乙种鱼苗不超过4000尾;
(3)设购买鱼苗的总费用为w,甲种鱼苗买了a尾,则购买乙种鱼苗(6000-a)尾.
则w=0.5a+0.8(6000-a)=-0.3a+4800,
由题意,有
a+90 100
(6000-a)≥95 100
×6000,93 100
解得:a≤2400,
在w=-0.3a+4800中,
∵-0.3<0,
∴w随a的增大而减少,
∴当a取得最大值时,w便是最小,
即当a=2400时,w最小=4080.
答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.