已知三角形ABC的三边长为a,b,c,若M=c/(1+c),N=(a/1+a)+(b/1+b)比较M,N大小

问题描述:

已知三角形ABC的三边长为a,b,c,若M=c/(1+c),N=(a/1+a)+(b/1+b)比较M,N大小

M/N=c/(1+c)/[a/(1+a)+b/(1+b)]
=c/(1+c)/[(a+b+2ab)/(1+a+b+ab)]
=c(1+a+b+ab)/[(1+c)(a+b+2ab)]
=(c+ac+bc+abc)/(a+b+2ab+ac+bc+2abc)
=1-(a+b-c+2ab+abc)/(a+b+2ab+ac+bc+2abc)
c)
∴M