设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?

问题描述:

设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?
设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?(题目中的“[ ]”是绝对值、“limx—0”是极限趋于0)

limx—0 f’’(x) / [x] =1 ,由极限的保号性质,说明f''(0)>0,所以f'(x)在0附近是递增的,因为f’(x)=0,所以,f'(x)先是小于零,然后等于0,然后大于零,也就是f(x)先递减后递增,所以f(0)是f(x)的极小值.