设z∈C且|z-i|=|z-1|则复数z在复平面上的对应点Z(x,y)的轨迹方程是?|z+i|的最小值为?)
问题描述:
设z∈C且|z-i|=|z-1|则复数z在复平面上的对应点Z(x,y)的轨迹方程是?|z+i|的最小值为?)
答
设Z=x+y*i,代入|z-i|=|z-1|,|x+(y-1)i|=|(x-1)+y*i|,两边平方,得x^2+(y-1)^2=(x-1)^2+y^2,解得,y=x.即Z的实部与虚部相等.∴Z(x,y)的轨迹方程是y=x,即第一、三象限角平分线.第二个问题可以结合坐标轴.|z+i|表示z与点...