某工程队要招聘A,B两种工种的工人共150人,A,B两个工种的工人的月工资分别为600元和1000元.现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所付工资
问题描述:
某工程队要招聘A,B两种工种的工人共150人,A,B两个工种的工人的月工资分别为600元和1000元.现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所付工资最少?
答
设招聘A工种工人x名,则设招聘B工种工人(150-x)名,
依题意得:
150−x≥2x x≥0
解得:0≤x≤50
又设每月所支付工人工资y元,则y=600x+1000(150-x)=-400x+150000(0≤x≤50)
因为k=-400<0,所以一次函数y随x的增大而减少,
所以当x=50时,y有最少值y=-400x+150000=-400×50+150000=130000(元)
答:招聘A工种工人50名,支付工人工资130000元的最少值.