求下面隐函数的微分.y+sin(xy)=1
问题描述:
求下面隐函数的微分.y+sin(xy)=1
答
y+sin(xy)=1两边对x求导得:y'+cos(xy)*(xy)'=0即y'+cos(xy)*(y+xy')=0所以y'=-ycos(xy)/(1+xcos(xy))即dy/dx=-ycos(xy)/(1+xcos(xy))所以dy=-ycos(xy)dx/(1+xcos(xy))如果不懂,请Hi我,祝学习愉快!...