设数列an满足a1=0且1/(1-an+1)-1/(1-an)=1,设bn=(1-根号an+1)/根号n,记Sn为bn的前n项和,证明Sn扫码下载作业帮拍照答疑一拍即得
问题描述:
设数列an满足a1=0且1/(1-an+1)-1/(1-an)=1,设bn=(1-根号an+1)/根号n,记Sn为bn的前n项和,证明Sn
扫码下载作业帮
拍照答疑一拍即得
答
证明:令cn=1/(1-an),则c1=1/(1-a1)=1,所以:c(n+1)-cn=1,是等差数列,即:cn=c1+(n-1)=n,则:an=(n-1)/nbn=[1-√a(n+1)]/n={1-√[n/(n+1)]} / n=1/√n - 1/ √(n+1)Sn=b1+...+bn=1-1/√2 +.+ 1/√n - 1/ √(n+1)=1- ...