计算1+5+2+10+3+15+...+100+500

问题描述:

计算1+5+2+10+3+15+...+100+500

1+5+2+10+3+15+...+100+500
=(1+5)+(2+10)+(3+15)+...+(100+500)
=6+2x6+3x6+……+100x6
=6x(1+2+3+……+100)
=6x[100x(100+1)]/2
=3x100x101
=30300