设f(X)在区间(a,b)内二阶可导,且f''(x)≥0

问题描述:

设f(X)在区间(a,b)内二阶可导,且f''(x)≥0
证明:任意的x,x0属于(a,b),有f(x)≥f(x0)+f'(x0)(x-x0)

不知道你想用那种方法证明?要是用泰勒级数展开的话,结论很明显!f(x)=f(x0)+f'(x0)(x-x0)+.+拉格朗日余项,因为f''(x)≥0,所以第三项一定大于零!所以结论成立!