试说明:关于X的方程MX^2-(M+2)X=-1必有实根

问题描述:

试说明:关于X的方程MX^2-(M+2)X=-1必有实根

方程变形为MX^2-(M+2)X+1=0
当M=0时 方程为-2x=-1 x=1/2
当m≠0时b^2-4ac=m^2+4>0 方程有两个不等实根
所以方程必有实根