观察下列各式,1/6=1/2*3=1/2-1/3;1/12=1/3*4=1/3-1/4:1/20=1/4*5=1/4-1/5;1/30=1/

问题描述:

观察下列各式,1/6=1/2*3=1/2-1/3;1/12=1/3*4=1/3-1/4:1/20=1/4*5=1/4-1/5;1/30=1/
用上面的规律解方程:1/(x-2)(x-3)-1/(x-1)(x-3)+1/(x-1)(x-2)
不要用其他人的回答,

1/(x-2)(x-3)-1/(x-1)(x-3)+1/(x-1)(x-2)
=1/(x-2)-1/(x-3)-1/(x-1)+1/(x-3)+1/(x-1)-1/(x-2)
=01/(x-1)(x-3)怎么化成1/(x-1)+1/(x-3)还有1/(x-1)(x-2)应该是)1/(x-2)-1/(x1)吧,1/(x-2)小于1/(x1),不是要放在前面吗哦,对不起 1/(x-2)(x-3)-1/(x-1)(x-3)+1/(x-1)(x-2) =1/(x-3)-1/(x-2)-1/2[1/(x-3)-1/(x-1)]+1/(x-2)-1/(x-1) =1/(x-3)-1/(x-2)-1/2(x-3)+1/2(x-1)+1/(x-2)-1/(x-1) =1/2(x-3)-1/2(x-1) =1/(x-1)(x-3)