f(x)=x^2-2aInxcoskπ,当k=2010,f(x)=2ax有唯一解,求a 两种方法求解

问题描述:

f(x)=x^2-2aInxcoskπ,当k=2010,f(x)=2ax有唯一解,求a 两种方法求解
a>0,不离求导的方法,但是又和常规方法不太一样,是一个经典题型

由于k=2010为偶数,所以,f(x)=x^2-2alnx,又f(x)=2ax,故x^2-2alnx-2ax=x^2-2ax-2alnx=0.
上式看成x的二次方程.由于只有唯一解,所以,令λ=lnx,Δ=4a^2+8aλ=4a(a+2λ)=0.
显然当a=0或a=-2λ时有唯一解,且当a=0是唯一解为x=0;
当a=-2λ时,二次方程化为:x^2+4λx+4λlnx=x^2+4λx+4λ^2=0即,x=-2lnx=-2λ=a.
即,当a=0或a=-2λ时有唯一解,且分别为0和方程x=-2lnx的解.
如果限定a>0,则方程的唯一解即为方程x=-2lnx的解,且a必为-2lnx,虽然这个具体的x值不那么容易算,但答案是无误的,而这个方法根本不用求导.
另一种方法思考中.问题是a大于零,而且In里面的x是大于零的,如果x=-2Inx,那么x就必为负,绝对要舍去。anyway,thank youx>0不意味着lnx>0。当01时,lnx>0。这里的x0不意味着lnx>0。当01时,lnx>0。这里重给答案如下:沿用前面的方法,令g(x)=x^2-2alnx-2ax=x^2-2a(lnx+x)。因为lnx≤x-1,仅当x=1时取等号,于是lnx+x≤2x-1。即g(x)≥x^2-2a(2x-1)=(x-2a)^2+2a(1-2a)。又由于g(x)=0有唯一解,且a>0,仅当g(x)仅当x=2a时取得最小值,此时要g(x)=0,必有1-2a=0,即a=1/2,且x=1为所求唯一解。否则,又两种情况,即a0,因而g(x)>0,无解;或者,a>1/2,此时2a(1-2a)