设f(x)=ax的5次方+bx的3次方+cx+5,其中a,b,c为常数,若f(-7)=7,则f(7)
问题描述:
设f(x)=ax的5次方+bx的3次方+cx+5,其中a,b,c为常数,若f(-7)=7,则f(7)
答
f(-x)=a(-x)^5+b(-x)^3+c(-x)+5=-(ax^5+bx^3+cx)+5
f(7)=a*7^5+b*7^3+c*7+5=7
a*7^5+b*7^3+c*7=2
f(-7)=-(a*7^5+b*7^3+c*7)+5=3不好意思这步a*7^5+b*7^3+c*7=2不懂a*7^5+b*7^3+c*7+5=7 移项:a*7^5+b*7^3+c*7=7-5=2