1/x+1/y+1/z=1/x^3+1/y^3+1/z^3+3/x^2y+3/xy^2+3/x^2z+3/xz^2+3/y^z+3/yz^2+6/xyz
问题描述:
1/x+1/y+1/z=1/x^3+1/y^3+1/z^3+3/x^2y+3/xy^2+3/x^2z+3/xz^2+3/y^z+3/yz^2+6/xyz
求1/x+1/y+1/z的值
答
1/x+1/y+1/z=1/x³+1/y³+1/z³+3/(x²y)+3/(xy²)+3/(x²z)+3/(xz²)+3/(y²z)+3/(yz²)+6/(xyz)1/x+1/y+1/z=(1/x+1/y+1/z)³(1/x+1/y+1/z)³-(1/x+1/y+1/z)=0(1/x+1/...