当pq都为正数且p+q=1时,试比较代数式(px+qy)^2与px^2+qy^2的大小
问题描述:
当pq都为正数且p+q=1时,试比较代数式(px+qy)^2与px^2+qy^2的大小
答
px^2+qy^2-(px+qy)^2=px^2+qy^2-(px)^2-(qy)^2-2pqxy
=(p-p^2)x^2+(q-q^2)y^2-2pqxy
=pqx^2+pqy^2-2pqxy
=pq(x^2-2xy+y^2)
=pq(x-y)^2
故当x等于y时 .
当x不等于y时.
又PQ为正数.
故 (px+qy)^2小于等于 px^2+qy^2