已知limn→∞an2+cnbn2+c=2,limn→∞bn+ccn+a=3,则limn→∞an2+bn+ccn2+an+b=( ) A.16 B.23 C.32 D.6
问题描述:
已知
lim n→∞
=2,an2+cn bn2+c
lim n→∞
=3,则bn+c cn+a
lim n→∞
=( )an2+bn+c cn2+an+b
A.
1 6
B.
2 3
C.
3 2
D. 6
答
∵
lim n→∞
=2,an2+cn bn2+c
lim n→∞
=3,∴bn+c cn+a
=2,a b
=3,∴b c
=2×3=6. a c
∴
lim n→∞
=an2+bn+c cn2+an+b
lim n→∞
=a +
+b n
c n2 c+
+a n
b n2
=a+0+0 c+0+0
=6,a c
故选D.