设a1,a2,a3,.an都是正数,且构成等比数列,求证1/lga1*lga2+1/lga2*lga3+.1/lgan-1*lgan=n-1/lga1*lgan

问题描述:

设a1,a2,a3,.an都是正数,且构成等比数列,求证1/lga1*lga2+1/lga2*lga3+.1/lgan-1*lgan=n-1/lga1*lgan

设公比为d,则
1/lga1*lga2+1/lga2*lga3+.1/lgan-1*lganthen1/lga1-1/lga2=(lga2-lga1)/(lg1*lga2)=lg(a2/a1)/(lga1*lga2)=lgd/(lga1*lga2)1/lga2-1/lga3=(lga3-lga2)/(lg2*lga3)=lg(a3/a2)/(lga2*lga3)=lgd/(lga2*lga3)...d不等于1时:1/lga1*lga2+1/lga2*lga3+.....1/lgan-1*lgan =(1/lgd)[(1/lga1-1/lga2)+/(1/lga2-1/lga3)+...+(1/lga(n-1)-1/lgan)=(1/lgd)[1/lga1-1/lgan]=(1/lgd)[(lgan-lga1)/(lga1lgan)]=(1/lgd)[(n-1)lgd/(lga1lgan)]=(n-1)/(lga1lgan)d=1时显然