数列{an}满足a1+a2+…+an=2n2−3n+1,则a4+a5+…+a10=_.
问题描述:
数列{an}满足a1+a2+…+an=2n2−3n+1,则a4+a5+…+a10=______.
答
由a1+a2+…+an=2n2−3n+1,
得a1+a2+…+a10=2×102-3×10+1①,
a1+a2+a3=2×32−3×3+1②,
①-②得,a4+a5+…+a10=(2×102-3×10+1)-(2×32-3×3+1)=161,
故答案为:161.