求由星形线x^(2/3)+y^(2/3)=a^(2/3)所围成的图形绕x轴旋转而成的旋转体的体积 (32/105)πa^3

问题描述:

求由星形线x^(2/3)+y^(2/3)=a^(2/3)所围成的图形绕x轴旋转而成的旋转体的体积 (32/105)πa^3

y=±[a^(2/3)-x^(2/3)]^(3/2),星形线分成上下两个半支,考虑X轴对称关系,只求上半支即可,从-a至a以Y轴左右对称,可求从0至a积分,再乘以2,V=2π∫[0,a]{[a^(2/3)-x^(2/3)]^(3/2)}^2dx=2π∫[0,a][a^2-3a^(4/3)x^(2/3)...